<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<ArticleSet>
<Article>
<Journal>
<PublisherName>theaimsjournal</PublisherName>
<JournalTitle>Allana Management Journal of Research, Pune</JournalTitle>
<PISSN> 2581 - 3137 (</PISSN>
<EISSN>) 2231 - 0290 (Print)</EISSN>
<Volume-Issue>Volume 15, Issue 2</Volume-Issue>
<PartNumber/>
<IssueTopic>Multidisciplinary</IssueTopic>
<IssueLanguage>English</IssueLanguage>
<Season>July 2025 - Dec 2025</Season>
<SpecialIssue>N</SpecialIssue>
<SupplementaryIssue>N</SupplementaryIssue>
<IssueOA>Y</IssueOA>
<PubDate>
<Year>-0001</Year>
<Month>11</Month>
<Day>30</Day>
</PubDate>
<ArticleType>Information Technology Management</ArticleType>
<ArticleTitle>HARNESSING THE POWER OF AI FOR TRANSFORMING RESEARCH</ArticleTitle>
<SubTitle/>
<ArticleLanguage>English</ArticleLanguage>
<ArticleOA>Y</ArticleOA>
<FirstPage>43</FirstPage>
<LastPage>53</LastPage>
<AuthorList>
<Author>
<FirstName>Ms. Swathi</FirstName>
<LastName>Jain</LastName>
<AuthorLanguage>English</AuthorLanguage>
<Affiliation/>
<CorrespondingAuthor>N</CorrespondingAuthor>
<ORCID/>
</Author>
</AuthorList>
<DOI>https://doi.org/10.62223/AMJR.2025.150205</DOI>
<Abstract>Purpose: The present study explores how Artificial Intelligence (AI) is reshaping scientific research by accelerating discovery, improving data analysis, and further transforming research methodologies. It aims to identify the roles AI plays in research, highlight methodological changes, and examine associated ethical concerns.
Design/Methodology/Approach: The research utilises secondary data from academic journals, editorial reviews, and case studies across multiple disciplines. The current paper opted content analysis to identify common patterns, benefits, and limitations in AI integration.
Findings: The research efficacy today based on AI which uses automation of routine tasks such as hypothesis testing, literature reviews, and simulation modelling. It also supports the peer review process. Machine learning enables predictive modelling, particularly in biomedical and environmental sciences, while large language models assist in summarization and question-answering within academic databases. Although we see, challenges persist, including algorithmic bias, data privacy risks, and limited interpretability of AI systems.
Research Limitations/Implications: The present study is literature-based, it lacks primary empirical data. Future research could focus on specific AI applications in real-world research settings and assess long-term impacts.
Practical Implications: Research institutions are encouraged to promote AI literacy, invest in transparent and explainable AI systems, and implement ethical frameworks to guide responsible AI usage in research.
Originality/Value: This study offers a cross-disciplinary synthesis of AI’s impact on research, highlighting both its transformative potential and the importance of ethical integration for sustainable innovation.</Abstract>
<AbstractLanguage>English</AbstractLanguage>
<Keywords>Artificial Intelligence (AI), Scientific Research Transformation, Machine Learning Applications, Ethical AI in Research</Keywords>
<URLs>
<Abstract>https://www.theaimsjournal.org/ubijournal-v1copy/journals/abstract.php?article_id=15878&title=HARNESSING THE POWER OF AI FOR TRANSFORMING RESEARCH</Abstract>
</URLs>
<References>
<ReferencesarticleTitle>References</ReferencesarticleTitle>
<ReferencesfirstPage>16</ReferencesfirstPage>
<ReferenceslastPage>19</ReferenceslastPage>
<References>Back, S., Aspuru-Guzik, A., and; Srivastava, M. (2023). Accelerated chemical science with AI. https://consensus.app/papers/accelerated-chemical-science-with-ai-back-aspuru-guzik/7b8e24a2789c5ed4b1da0c0fc824c910/?utm_source=chatgpt
Bichindaritz, I. (2008). Case-based reasoning in the health sciences: Why it matters. https://consensus.app/papers/casebased-reasoning-in-the-health-sciences-why-it-mattersbichindaritz/4f963ba771fc5473a095148b6e9179dc/?utm_source=chatgpt
Bura, C., and; Myakala, P. K. (2024). Advancing transformative education: Generative AI as a catalyst for equity and innovation. https://consensus.app/papers/advancing-transformative-education-generative-ai-as-a-bura myakala/7d52ced077d258d1a870c47944d05304/?utm_source=chatgpt
Cuand;eacute;llar, M. F., Dean, J., Doshi-Velez, F., Hennessy, J. L., Konwinski, A., Koyejo, O., Moiloa, P., Pierson, E., and; Patterson, D. A. (2024). Shaping AIand;#39;s impact on billions of lives. https://consensus.app/papers/shaping-ais-impact-on-billions-of-lives-cuellar-dean/4a56457318825b5ca24c569a62e0cfe9/?utm_source=chatgpt
Guo, H., Wu, Y., Zhang, Y., and; Li, X. (2023). Artificial intelligence–driven biomedical genomics. https://consensus.app/papers/artificial-intelligencedriven-biomedical-genomics-guo-wu/c733e9f08fb1539cac50f89cb2338898/?utm_source=chatgpt
Izquierdo-Condoy, M. J., Vand;aacute;sconez Gonzand;aacute;lez, C. E., and; Medina-Camacho, J. M. (2024). “AI et al.”: The perils of overreliance on artificial intelligence in research. https://consensus.app/papers/“-ai-et-al-”-the-perils-of-overreliance-on-artificial-izquierdo-condoy-vand;aacute;sconez-gonzand;aacute;lez/5dcadd88aafc5be2bc8594e8e2b99395/?utm_source=chatgpt
Klami, A., Damoulas, T., and; Jones, M. (2024). Virtual laboratories: Transforming research with AI across disciplines. https://consensus.app/papers/virtual-laboratories-transforming-research-with-ai-klami damoulas/f86a746f509756ba80e0314fa92a10b0/?utm_source=chatgpt
Meijer, L., Beniddir, M. A., and; Genta-Jouve, G. (2024). Empowering natural product science with AI. https://consensus.app/papers/empowering-natural-product-science-with-ai-leveraging-meijer-beniddir/85730e9c5e6551769d40aebaa607bc5c/?utm_source=chatgpt
Pascual-Paand;ntilde;ach, J., Sand;agrave;nchez-Marrand;egrave;, M., and; Gibert, K. (2024). A temporal case-based reasoning approach for performance simulation in environmental systems. https://consensus.app/papers/a-temporal-casebased-reasoning-approach-for-performance-pascual-paand;ntilde;ach-sand;agrave;nchez-marrand;egrave;/45138774ad21595ebc91ded35b7fb110/?utm_source=chatgpt
Pawar, G., and; Khose, J. (2024). Exploring the role of artificial intelligence in enhancing equity and inclusion in education. https://consensus.app/papers/exploring-the-role-of-artificial-intelligence-in-pawar khose/fdc148edae7c5776bac047dabbf82d48/?utm_source=chatgpt
Resnik, D. B., and; Hosseini, M. (2024). The ethics of using artificial intelligence in scientific research. https://consensus.app/papers/the-ethics-of-using-artificial-intelligence-in-scientific-resnikhosseini/e45d33a6dca652f6abc97e99d2c5d7d6/?utm_source=chatgpt
Sourati, J., and; Evans, J. A. (2023). Accelerating science with human-aware artificial intelligence. https://consensus.app/papers/accelerating-science-with-humanaware-artificial-souratievans/7c9f7047629558c08d43096bd93f7fc4/?utm_source=chatgpt
Tupayachi, J. C., Xu, H., and; Gand;oacute;mez, C. (2024). Towards next-generation urban decision support systems: Scientific scenario building with LLMs. https://consensus.app/papers/towards-nextgeneration-urban-decision-support-systems-tupayachi xu/9ec69aa1d2ff55c5940f7cdfbfb66cbb/?utm_source=chatgpt
Zhu, M., Wu, C., and; Wang, J. (2020). Artificial intelligence for contemporary chemistry. https://consensus.app/papers/artificial-intelligence-for-contemporary-chemistry-zhuwu/bc84391746b55ff1ba362424e153c677/?utm_source=chatgpt</References>
</References>
</Journal>
</Article>
</ArticleSet>